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Overview 

This paper considers a new method, called Cross-Site Attributional Model Improved by Calibration to 

Within-Site Individual Randomization Findings (CAMIC), which seeks to reduce bias in analyses that 

researchers use to understand what about a program’s structure and implementation leads its impact to 

vary.  

Randomized experiments—in which study participants are randomly assigned to treatment and control 

groups within sites—give researchers a powerful method for understanding a program’s effectiveness. 

Once they know the direction (favorable or unfavorable) and magnitude (small or large) of a program’s 

impact, the next question is why the program produced its effect. Multi-site evaluations offer a chance to 

“get inside the black box” and explore that question.  

First, researchers estimate the overall impact of the program without selection bias or other sources of 

bias, and then use cross-site analyses to connect  program structure (what is offered) and implementation 

(how it is offered) to the magnitude of the impacts. However, these estimates are non-experimental and 

may be biased. 

The CAMIC method takes advantage of randomization of a program component in only some sites to 

improve estimating the effects of other program components and implementation features that are not or 

cannot be randomized. The paper describes the method for potential use in the Health Profession 

Opportunity Grants (HPOG) program evaluation. 

A simulation analysis of CAMIC shows that the method does not consistently reduce bias and, in some 

cases, increases bias. Nevertheless, we argue that presenting details of the method is useful. We urge 

other researchers to consider other settings where the method might be successfully applied in order to 

help evaluators learn more about what works. 

Primary Research Question 

Can the CAMIC method improve our ability to detect, without bias, which program components and 

implementation features are essential to a program’s success?  

Purpose 

In job training evaluations, the program components (such as a given curriculum or support service) are 

rarely randomized to sites; and most implementation features (such as the dynamism of a site 

administrator) cannot be randomized. Instead, each site chooses its own configuration of program 

components to adopt and each possesses its own set of implementation features. As a result, the reasons 

that a particular combination of program components and implementation features exists in a site are also 

correlated with the program’s impact. For example, the local program director’s enthusiasm and 

leadership might be associated with both the choice of a particular program component and how well the 

component is implemented. Better implementation, in turn, might lead to greater program impact. But if 

that implementation feature is not measured and therefore is excluded from the researcher’s cross-site 

attributional analysis, then estimates may overstate the influence of the program component on impact. 

Multi-site experiments can facilitate an understanding of the effects of both program components and 

implementation features.  This is the motivation for this work:  to test whether a new method can help 

researchers better estimate the contributions of program components and implementation features to 

overall program impact. 
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Key Findings & Highlights 

The paper describes how the CAMIC method uses the experimental estimate of the influence of a 

particular program component to specify the statistical model used for understanding the influence of 

other, non-randomized program components and implementation features. The goal is to identify the 

model that is least biased. However, the theoretical work demonstrates that there may be no single model 

that is the least biased for all estimates. Depending on the specific correlations among measured and 

unmeasured program components and implementation features, the model that produces the least biased 

measure of the influence of one program component may produce the most biased model of the influence 

of another.  

Simulation work investigated how often the CAMIC method could select the least biased estimate of the 

influence of a particular program component. These simulations were unable to find generalizable 

conditions under which the CAMIC method is likely to reduce bias. Across all simulations, results were 

favorable to the CAMIC method for 47 percent of the parameters tested. 

Methods 

The Health Profession Opportunity Grants (HPOG) program’s impact evaluation is assessing whether 

providing access to health sector career pathways training improves participant outcomes overall. To do 

this, individuals are randomized to the HPOG treatment group or to a control group that does not have 

access to HPOG-funded services. Importantly, in some sites there are two treatment groups, and this 

allows researchers to focus on a given program component’s relative impacts. In particular, one treatment 

group has access to HPOG while the second treatment group has access to HPOG enhanced with one of 

three additional program components: facilitated peer support groups, emergency assistance for specific 

needs, or noncash incentives that encourage desirable program outputs and outcomes. These three studies 

can provide strong experimental evidence of the relative contribution of peer support, emergency 

assistance, or noncash incentives to the HPOG program’s impact.  

The CAMIC method is designed to exploit three-armed randomization of certain program components to 

estimate the effect of other components or intervention features through cross-site non-experimental 

attributional analysis. That is, can having experimental evidence on one of HPOG’s experimentally 

evaluated enhancements improve our ability to gauge the effectiveness of other HPOG program 

components in situations where we observe these same program components naturally occurring in the 

program?  

The method’s basic approach involves the following: 

1. Estimating the experimental impact of the program component (e.g., peer support) added to HPOG 

through a second treatment arm;  

2. Calculating several alternative, non-experimental estimates of the impact contribution of the program 

component (e.g., peer support) from cross-site analysis models that control for various sets of site-

level influences in each analysis; 

3. Choosing the model that minimizes the difference between the experimental and non-experimental 

estimates of the impact contribution of the added program component (e.g., peer support); and  

4. Applying that model to estimate the contribution to program impact of other program components 

(not peer support but other components naturally occurring in the HPOG program such as intensive 

case management or the presence of career pathways principles) or implementation features (e.g., the 



Abt Associates Using Within-Site Experimental Evidence to Reduce Cross-Site Attributional Bias ▌pg. iv 

program’s administrative structure, or case workers’ client orientation) when these other components 

or features do not vary randomly among individuals within sites or across sites. 
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1. Introduction 

Randomized experiments provide researchers with a powerful method for understanding a program’s 

effectiveness. Once they know the direction (favorable or unfavorable) and magnitude (small or large) of 

a program’s impact, the next question is why the program produced its effect. Programs that operate in 

many locations—and the multi-site evaluations that accompany them—offer an opportunity to “get inside 

the black box” and explore that question. That is, what is it about how the program is configured and 

implemented that leads its impact to vary?  

Multi-site experiments—in which study participants are randomly assigned to treatment and control 

groups within sites—do this by enabling researchers first to estimate the overall impact of the program at 

each site without selection bias or other sources of bias, and then to move on to cross-site attributional 

analyses that connect the specifics of program configuration (what is offered) and implementation (how it 

is offered) to the magnitude of the impacts.  

A small but growing portion of the literature evaluating the impacts of social programs uses multi-site 

experiments to investigate what it is about a particular program that determines its impacts (e.g., Bloom, 

Hill, & Riccio, 2001; 2003; Dorsett & Robins, 2013; Godfrey & Yoshikawa, 2012; Greenberg, Meyer, & 

Wiseman, 1994).  

For example, in the Health Profession Opportunity Grants (HPOG) program impact evaluation, more than 

10,000 individuals have been randomized to gain access to HPOG-funded services in almost 40 program 

locations. Looking across all these individuals and locations will provide an overall assessment of 

HPOG’s impact; but examining how cross-site variation—in both the what and the how—associates with 

variation in program impacts can help inform lessons for future program design and practice. In HPOG, 

the what (which in this paper we call “program components”) is health sector, career pathways-based 

education, training, and supports. The how (what we call “implementation features”) pertains, for 

example, to the office culture at a site, the autonomy of its staff, or their client-centered orientation. 

In a program evaluation, the program components (such as a given curriculum or support service) 

themselves are rarely randomized to sites; and implementation features (such as the dynamism of a site 

administrator) cannot be randomized. Instead, each site chooses its own configuration of program 

components to adopt and each possesses its own set of implementation features. For example, site 

planners taking up the HPOG program might decide to offer HPOG’s facilitated peer support as part of 

their job training; and their own traits that associate with that decision (such as the administrator’s 

leadership ability) will inform how the program is implemented in practice. Thus, non-experimental 

attribution of impact to various aspects of the site can be biased when the choices that sites make of what 

to offer and how to offer it reflect underlying factors that are hard to account for in the analysis—but that 

themselves may cause program impacts to be larger or smaller.  

The reasons that a particular combination of program components and implementation features exists in a 

site also are correlated with the program’s impact. For example, the local program director’s enthusiasm 

and leadership might be associated with both the choice of a particular program component and how well 

the component is implemented. Better implementation, in turn, might lead to greater program impact. But 

if that implementation feature is not measured and therefore is excluded from the researcher’s cross-site 
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attributional analysis, then estimates may overstate the influence of the program component on impact. 

Likewise, the local environment—including economic conditions and policy context—might be 

associated with both the program components adopted by the site and the routes by which program 

participants can benefit from it, such as the number of “career ladder” jobs in the local economy. This 

type of contextual influence also may be difficult to measure and control for in the analysis. These and 

other such scenarios would bias estimates of the influence of program components and implementation 

features when they do not vary randomly across sites.  

It is possible to randomize individuals to gain access to program components (for example, a lottery can 

be used in a job-training program to decide which participants are offered internships). But it generally is 

not possible to randomize to implementation features. That said, research is interested in understanding 

the effects of both program components and implementation features, and multi-site experiments can 

facilitate that learning. 

1.1 Introducing the CAMIC Method 

This paper examines whether having an experimental estimate of the contribution that a program 

component makes to impact magnitude can reduce the bias in estimating the contribution that other 

program components (or implementation features) make across sites that choose how to configure and 

implement their programs (rather than those components or features being assigned randomly to them).  

In doing that, the paper considers studies with a strong foundation for attributing impacts to the program 

in general: randomization of individuals in each site to either program access (the treatment group) or 

total program exclusion (the control group). It investigates whether adding a second randomly assigned 

treatment arm that offers an enhanced version of the HPOG program (that includes a program component 

not available as part of the standard program offered to the first treatment arm) can improve non-

experimental estimates of the impact contribution of other program components or of implementation 

features.  

For example, in the case of the HPOG program, a three-armed randomized experimental evaluation is 

being implemented in some but not all sites, and for some but not all program components. That 

evaluation is assessing whether providing access to health sector career pathways training improves 

outcomes overall. To do this, individuals are randomized to the HPOG treatment group or to a control 

group that does not have access to HPOG-funded services. In some sites, there are two treatment groups. 

One group has access to HPOG, while the second treatment group has access to HPOG enhanced with 

one of three additional program components: facilitated peer support groups, emergency assistance for 

specific needs, and noncash incentives that encourage desirable program outputs and outcomes. These 

three experimental tests will provide strong evidence of the relative contribution of peer support, 

emergency assistance, or noncash incentives to the HPOG program’s impact.  

The new method that this paper describes is designed to exploit three-armed randomization of certain 

program components to estimate the effect of other components or intervention features through cross-site 

non-experimental attributional analysis. That is, can having experimental evidence on one of HPOG’s 

experimentally evaluated enhancements improve our ability to gauge the effectiveness of other HPOG 

program components in situations where we observe these same program components naturally occurring 
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in the program world? We refer to the method as CAMIC, for Cross-Site Attributional Model Improved 

by Calibration to Within-Site Individual Randomization Findings.  

The CAMIC method seeks to reduce bias by identifying measures that account for site-level selection of 

program design and implementation to include in the statistical model. The number of measures an 

analyst can include in the model is limited by the number of sites in the analysis. That is, the analysis 

cannot include more measures than the number of sites; instead, the rule of thumb is that about one 

measure per eight sites is the most that should be included. This “degrees of freedom” limitation implies 

that analysts need to be selective in what enters into the analytic model; and the CAMIC method provides 

one way to be selective. 

The method’s basic approach involves the following: 

5. Estimating the experimental impact of the program component (e.g., peer support) added to HPOG 

through a second treatment arm;  

6. Calculating several alternative, non-experimental estimates of the impact contribution of the program 

component (e.g., peer support) from cross-site analysis models that control for various sets of site-

level influences in each analysis; 

7. Choosing the model that minimizes the difference between the experimental and non-experimental 

estimates of the impact contribution of the added program component (e.g., peer support); and  

8. Applying that model to estimate the contribution to program impact of other program components 

(not peer support but other components naturally occurring in the HPOG program world such as 

intensive case management or the presence of career pathways principles) or implementation features 

(e.g., the program’s administrative structure, or case workers’ client orientation) when these other 

components or features do not vary randomly among individuals within sites or across sites. 

1.2 About This Paper 

This paper examines the CAMIC method as a potential innovation to the evaluator’s toolkit: Can 

experimental evidence from a three-armed experiment be leveraged to reduce bias in non-experimentally 

estimated impact estimates? The intuition is strong: If we know the “truth” from the experimental 

evidence, then that should help in bringing non-experimental estimates closer to that truth. The CAMIC 

method uses the difference between experimental and non-experimental impact estimates to choose the 

model results in the least-biased non-experimental estimates, and then extends model to estimate the 

contribution to program impact of other program components or implementation features. 

The method was developed for use in the HPOG Impact Study, where we will have both experimental and 

non-experimental evidence about the effectiveness of some of the program’s components. While we wait 

for that study’s data to become available, this paper undertakes a simulation study to examine the CAMIC 

method’s properties.  

In brief, despite the intuitive promise of the CAMIC method, in the simulations performed to date, the 

method does not consistently reduce bias in estimates of the contribution to program impact of 

components or features that were not randomized. We believe that presenting details of the method are 
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useful regardless, so that future simulations and future applied analytic tests can continue to consider the 

approach and contribute to advancing program evaluation methodology. 

The paper proceeds as follows. The next section describes, both conceptually and analytically, the 

standard approach to producing cross-site estimates of the impact contributions of program components 

and implementation features, when individuals are randomly assigned to treatment and control groups 

within sites. Then we extend this framework to the situation in which we have an additional experimental 

treatment arm capable of isolating the effect of a particular program component or implementation 

feature. We explain how the CAMIC method can use data from this kind of three-armed experiment to 

estimate the impact of all the components and features of interest. A simulation exercise examines the 

circumstances in which the CAMIC method leads to less-biased non-experimental impact estimates. 

Finally, we summarize the paper’s contributions and make suggestions for future research in this area. 
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2. Standard Approach to Cross-Site Attributional Analysis with 

Experimental Data 

This section explains that various site-level factors—which may be measured or unmeasured—can 

influence the magnitude of a program’s impact, and it provides an analytic model for deriving these 

“moderating” influences from experimental data on many sites whose approaches to the program vary.  

It begins by identifying the types of moderators often considered as potential causes of variation in impact 

magnitude across the sites of a multi-site social program experiment. It then describes the multi-level 

analytic framework for attributing variation in impact to program components, implementation features, 

and other site-level explanatory factors. This multi-level model is built on the structure of the HPOG 

Impact study, where individuals are randomly assigned to treatment and control groups within sites, but 

sites are free to choose how to configure and operate their programs rather than having program 

components or implementation features randomly assigned to them.  

Consider HPOG again: There are a lot of similarities and a lot of differences among the many HPOG 

sites, and this variation may lead to variation in the program’s overall impact. The evaluation’s first 

research question considers the average impact across all the sites and all types of individuals. What the 

study is also interested in understanding, however, is the extent to which certain program components are 

essential ingredients to the HPOG recipe. As noted, the HPOG study has some three-armed experimental 

sites, which will examine the relative contribution of particular program components to HPOG’s impact. 

The study will be able to do so both through the experimental evidence alone (in the three-armed 

programs) and through the cross-site variation that exists naturally in the HPOG program world. 

In analyzing the impact of these selected program components where access to HPOG is determined 

through a lottery (randomly), the analytic model provides an experimental estimate of the intervention’s 

impact in each site that is statistically consistent.1 In analyzing the impact of selected program 

components and implementation features where access to HPOG is not random, the analytic model 

estimates the influence of these components and features on the magnitude of the program’s overall 

impact when the components and features vary from site to site.2 

2.1 Types of Moderators 

A key reference in this field is Bloom, Hill, and Riccio (2003), which hypothesizes site- and individual-

level factors that could affect the magnitude of intervention impacts. As detailed in the text box that 

follows, these include four types of site-level factors—program components, implementation features, 

                                                      

1 “Statistically consistent” means that the impact estimate moves extremely close to the true impact in the population 

as the sample size gets very large. 
2 Unlike the lottery estimate, these latter estimates may be subject to omitted-variable bias (and therefore may be 

inconsistent in very large samples) because the program components and implementation features of interest are not 

randomly assigned to sites. Instead, the sites choose what to implement and how to implement it. Additional 

explanation regarding why this is a problem appears in Appendix A. 
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local context, and participant composition—which may be measured or unmeasured. The factors 

underpin our framework for thinking about HPOG’s impacts. 

 

Multi-level analyses of experimental data tend to control for local context and participant composition so 

that analyses can focus on the impact of selected program components and implementation features. As 

described in further detail below, the goal is to estimate the contribution of each of the selected program 

components or implementation features to the magnitude of the program’s overall impact.  

2.2 Analytic Model 

When individuals are clustered within sites in a multi-site evaluation, it is customary to use a multi-level 

model to estimate the relationship between program impacts and the relevant site-level measures, as 

described above. The following two-level model depicts program impacts as a function of individual-level 

and site-level measures.  

The unit of analysis for Level One is the individual member of the study sample, while the unit of 

analysis for Level Two is the site. 

Level One: Individuals 

𝑌𝑗𝑖 = 𝛼𝑗 + 𝛽𝑗𝑇𝑗𝑖 + ∑ 𝛿𝑐𝐼𝐶𝑐𝑗𝑖𝑐 + ∑ 𝛾𝑐𝐼𝐶𝑐𝑗𝑖𝑐 𝑇𝑗𝑖 + 𝜀𝑗𝑖          (Eq. 1) 

Level Two: Sites 

𝛽𝑗 = 𝛽0 + ∑ 𝜋𝑚 𝑃𝑚𝑗 +𝑚 ∑ 𝜑𝑔𝐼𝑔𝑗𝑔 + ∑ 𝜏𝑑𝑃𝐶𝑑𝑗𝑑 + ∑ 𝜁𝑞𝐿𝐶𝑞𝑗𝑞 + 𝜇𝑗       (Eq. 2) 

Site-Level Factors that May Influence Program Impacts 

 Program Components. Program components (or program “activities,” as Bloom, Hill, and Riccio 

refer to them) represent the services offered to program participants. For example, in a job-training 

program, they include activities such as job search assistance and vocational training.  

 Implementation Features. Implementation features describe the practices and views of administrators 

and staff operating the program. For example, Bloom, Hill, and Riccio used the following variables 

when analyzing the implementation of welfare-to-work programs: the degree of a program’s 

emphasis on moving clients into jobs quickly, the degree of personalized attention given to clients, 

the closeness of client monitoring, frontline staff and staff/supervisor inconsistency in views about the 

agency’s service approaches, and staff caseload size. 

 Local Context. Site-level local context represents the environment in which the site is located. 

Relevant factors might include characteristics related to the economy (e.g., the unemployment rate), 

crime, housing market, demographic characteristics, or other relevant measures of the social, political, 

and economic climate.  

 Participant Composition. Impact magnitude might vary for various types of clients or be influenced 

by the composition of the clients being served. The aggregation of characteristics might include 

participants’ demographic, education, and economic backgrounds, as well as household traits (e.g., 

marriage status) and composition (e.g., number of children).  
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and 

𝛼𝑗 = 𝛼0 + ∑ 𝜅𝑞𝐿𝐶𝑞𝑗𝑞 + 𝑣𝑗                (Eq. 3) 

Combining the elements of the above two-level model produces the following: 

𝑌𝑗𝑖 = 𝛼0 + ∑ 𝜅𝑞𝐿𝐶𝑞𝑗𝑞 + 𝛽0𝑇𝑗𝑖 + ∑ 𝜋𝑚 𝑃𝑚𝑗𝑇𝑗𝑖 +𝑚 ∑ 𝜑𝑔𝐼𝑔𝑗𝑇𝑗𝑖𝑔 + ∑ 𝜏𝑑𝑃𝐶𝑑𝑗𝑇𝑗𝑖𝑑 +  

∑ 𝜁𝑞𝐿𝐶𝑞𝑗𝑇𝑗𝑖𝑞 + ∑ 𝛿𝑐𝐼𝐶𝑐𝑗𝑖𝑐 + ∑ 𝛾𝑐𝐼𝐶𝑐𝑗𝑖𝑐 𝑇𝑗𝑖 + {𝑣𝑗 + 𝜇𝑗𝑇𝑗𝑖 + 𝜀𝑗𝑖}        (Eq. 4) 

In these equations, Y is the outcome of interest, indexed by i individuals and j sites. In Equation (4), 

program components (𝑃𝑚𝑗), implementation features (𝐼𝑔𝑗), participant composition measures (𝑃𝐶𝑑𝑗), and 

local context measures (𝐿𝐶𝑞𝑗) are all multiplied by the treatment indicator. These interaction terms 

capture the influence of a given site-level measure on the magnitude of the program’s impact. Local 

context measures enter the model directly to capture the influence of the environment on the outcomes of 

those individuals in the treatment and control groups. This specification includes individual-level 

characteristics (𝐼𝐶𝑐𝑗𝑖) that affect these outcomes for both groups; it also includes participant composition, 

program components, and implementation features, which affect these outcomes only for individuals in 

the treatment group (because control group members never come in contact with the program or with 

other program participants). See Exhibit 1 for definitions of the terms included in these equations and all 

models presented throughout the manuscript. 

Ultimately, the goal is to discover the causal impact on participant outcomes of adding a program 

component or implementation feature not already incorporated in participants’ experience of the program. 

For example, in the HPOG Impact Study, we are analyzing the impact of offering program components 

such as emergency assistance and intensive case management. We are also analyzing the impact of 

implementation features, such as the extent to which the program operates on the principles of the career 

pathways framework or the extent to which program staff emphasize education or employment. The 

evaluation’s Analysis Plan discusses additional detail regarding the specific measures of interest that can 

be analyzed in this framework (see Harvill et al., 2015). 

In the equations above, estimates of the 𝜋𝑚 coefficients—call them �̂�𝑚
𝑁  (typically estimated using 

maximum likelihood methods, such as those described in Bryk and Raudenbush (1992))—are intended to 

capture the causal connection between program components and impact magnitude. The N superscript 

denotes that this estimate is non-experimental, because it is computed using cross-site variation in 

program components. Similarly, the estimates �̂�𝑔
𝑁 of the coefficients 𝜑𝑔 are intended to capture the causal 

connection between implementation features and impact magnitude.  

Limited degrees of freedom for this analysis, which are determined by the number of Level Two units, 

constrain the number of Level Two measures we can include in the model. As a result, the process of 

choosing which measures to include becomes quite important.  

Because estimates of these coefficients are identified by the natural variation in program components and 

implementation features across sites, omitted-variable bias arises in this analysis if one or more site-level 

measures exist that influence impact magnitude; that are not included in the Equation (4) model; and that 

correlate with one or more of the site-level measures that are included. This makes estimates of all the 

site-level coefficients, including �̂�𝑚
𝑁  and �̂�𝑔

𝑁, non-experimental and opens up the possibility of policy 
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conclusions confounded by extraneous influences. Appendix A includes a detailed description of 

circumstances that can cause omitted-variable bias in estimates of the contributions of program 

components and implementation features to site-level impacts. 

Exhibit 1: Definition of Model Terms 

Term Definition 

Outcome and Covariates 

𝑌𝑗𝑖 The outcome measure for individual i from site j  

𝑇𝑗𝑖 
The standard treatment group indicator (1 for those individuals assigned to the standard treatment group, 
and 0 for those individuals assigned to the enhanced treatment group or the control group; this is labelled “T” 
for “treatment”) 

𝐸𝑗𝑖 
The enhanced treatment group indicator (1 for those individuals assigned to the enhanced treatment group, 
and 0 otherwise; this is labelled “E” for “enhanced” treatment) 

𝑇𝐸𝑗𝑖 
The treatment group indicator (1 for those individuals assigned to the standard treatment or enhanced 
treatment group, and 0 for those individuals assigned to the control group; this is labelled “TE” for the 
combination of standard “treatment” and “enhanced” treatment) 

𝐼𝐶𝑐𝑗𝑖 
Individual baseline characteristic c for individual i from site j, c = 1, . . ., C (these are labelled “IC” for 
“individual characteristics”) 

𝑃𝑚𝑗 Program component m for site j, m = 1, . . ., M (these are labelled “P” for “program”) 

𝐼𝑔𝑗 Implementation feature g for site j, g = 1, . . ., G (these are labelled “I” for “implementation”) 

𝑃𝐶𝑑𝑗 
Participant composition variable d for site j, d = 1, . . ., D; this is a site-level aggregation of the individual 
characteristics (ICs) (these are labelled “PC” for “participant composition”) 

𝐿𝐶𝑞𝑗 Local context variable q for site j, q = 1, . . ., Q (these are labelled “LC” for “local context”) 

Model Coefficients 

𝛼𝑗  

(alpha) 
The control group mean outcome (counterfactual) in site j  

𝛽𝑗  

(beta) 
The conditional impact of being offered the standard intervention for each site j 

𝛿𝑐  
(delta) 

The effect of individual characteristic c on the mean outcome, c = 1, . . ., C  

𝛾𝑐  
(gamma) 

The influence of individual characteristic c on impact magnitude, c = 1, . . ., C 

𝛽0 The grand mean impact of the standard treatment 

𝜋𝑚 
(pi) 

The influence of program component m on impact magnitude, m = 1, . . ., M 

𝜑𝑔  

(phi) 
The influence of implementation feature g on impact magnitude, g = 1, . . ., G 

𝜏𝑑  
(tau) 

The influence of participant composition variable d on impact magnitude, d = 1, . . ., D  

𝜁𝑞  

(zeta) 
The influence of local context variable q on impact magnitude, q = 1, . . ., Q  

𝛼0 The grand mean control group outcome 
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Term Definition 

𝜅𝑞  

(kappa) 
The effect of local context variable q on control group mean outcome, q = 1, . . ., Q  

𝜋𝑒𝑗 The impact of being offered an enhanced program that includes component e relative to the standard 
program for each site; this and the other subscripted πs are program component impacts 

𝜋𝑒 The grand mean impact of being offered the enhanced intervention inclusive of component e, rather than the 
standard intervention without e 

Error Terms 

𝜀𝑗𝑖 

(epsilon) 
A random component of the outcome for each individual 

𝜇𝑗 

(mu) 
A random component of the standard intervention impact for each site 

𝑣𝑗 

(nu) 
A random component of the mean outcome for each site 

𝜔𝑗 

(omega) 
A random component of the enhanced intervention’s incremental impact for each site 

 

2.3 Addition of Three-Armed Sites 

Consider next the situation where some sites randomize individuals into not just treatment and control 

groups but also into a third “enhanced” treatment group. Those assigned to this third arm are offered the 

standard treatment plus an additional program component—the “enhancement.” This design allows us to 

generate an experimental estimate of the enhancement’s impact. Exhibit 2 portrays two alternative 

examples of how a six-site experiment might allocate selected program components to sites.  

Left-side example (two-armed). The example on the left side of Exhibit 2 depicts an experiment with two-

armed randomization of individuals between a control group and a treatment group. Each site has 

designed its own version of a “standard” program, choosing which components to include and how to 

implement them. Program offerings vary naturally from site to site: Two of the sites (F and G) offer their 

version of a standard program (which may differ between sites in ways not shown); two of the sites (H 

and I) offer their version of a standard program that contains component #1; and two of the sites (J and K) 

offer their version of a standard program that contains component #2.  

Right-side example (three-armed). The right side of Exhibit 2 depicts an alternative configuration of the 

same number of sites. Again, two of these sites (L and M) offer their own version of a “standard” 

program. Another two sites offer their version of a standard program, where the program at site N 

contains component #1 and the program at site O contains component #2. What is new is that two sites 

have added a second treatment configuration: One site (P) randomizes individuals to either its standard 

program (the TS arm) or its standard program enhanced by the addition of component #1 (the TE arm); 

and one site (Q) randomizes individuals to either its standard program or its standard program enhanced 

by the addition of component #2.  

The right side of the exhibit represents a simplified version of the HPOG program and its evaluation 

where—across 42 sites—several sites randomize individuals among a control group (excluded from the 

program), a “standard” program (first treatment arm), and a second treatment arm that includes the 
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standard program plus one of three enhancement components. In HPOG, the three enhancements are peer 

support, emergency assistance, and noncash incentives.  

Note that these program enhancements also exist naturally in two-armed sites—in this simplified diagram 

and in the actual HPOG evaluation. 

Exhibit 2. Illustrative Six-Site Experimental Designs 

 

Under the standard multi-site, multi-level analysis of the two-armed sites represented on the left side of 

Exhibit 2, the analysis would compare the treatment-control differences in mean outcomes in sites H and I 

with the treatment-control differences in mean outcomes of individuals in all the other sites (accounting 

for site-level contextual variables). This comparison would determine the contribution of program 

component #1 to overall program impact. This is a non-experimental analysis in which the experimental 

treatment-control difference (impact) in sites H and I may differ from differences in the other sites for 

reasons other than the presence of program component #1.  

In practice, this analysis would be carried out in a multiple regression framework as detailed in Section 

2.2. Here we discuss the analysis conceptually, however, to make clear the between-site comparisons 

being made to estimate impacts. In the “flat” regression provided by Equation (4) above, if other included 

site-level moderators of impact are sufficient and convincing at eliminating confounding factors, then the 

interpretation of the estimated impact of component #1 as causal and unbiased is more likely, but will 

never be complete. 
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The same type of analysis can take place with the two-armed sites represented on the right side of Exhibit 

2, where sites N and O inform the non-experimental analyses. In addition, sites P and Q can be used for 

generating an experimental estimate of the effect of program components #1 and #2, respectively, through 

a comparison between their two treatment arms. As such, they provide an opportunity to “calibrate” the 

non-experimental estimates of those same two program components. Because we have the “right” answer 

to the questions of how these two components contribute to program impacts from these experimental 

comparisons, we can vary the other site-level moderators included in the model in Equation (4) until these 

non-experimental estimates are as close as we can get them to their corresponding experimental estimates.  
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3. The CAMIC Method 

This section describes the CAMIC method for selecting the set of site-level covariates to include as 

impact moderators when seeking to attribute cross-site impact differences to the program components and 

implementation features adopted by local social service agencies. We begin by describing the intuition 

motivating the CAMIC method. Then, we specify how to estimate the experimental impact of the 

program component (e.g., peer support) added to HPOG though a second treatment arm. We then 

describe the steps in the CAMIC approach that calibrate the cross-site attributional model described in 

Equations (1) through (4) in the previous section: estimate these equations using a variety of models that 

include different sets of site-level measures; select the model that minimizes the difference between the 

experimental and non-experimental estimates of the impact contribution of the added program component 

(e.g., peer support); and apply that model to estimate the contribution to program impact of other program 

components (not peer support but other components naturally occurring in the HPOG program world such 

as intensive case management or the presence of career pathways principles) or implementation features 

(e.g., the program’s administrative structure, or case workers’ client orientation). 

Throughout the discussion, we assume that the model always includes a set of priority program 

components and implementation features. These might be prioritized because they interest policymakers, 

practitioners, or researchers.  

Beyond these priority program components and implementation features, the goal is to select the best set 

of measures (those contextual factors discussed earlier) to analyze in order to reduce the degree to which 

other influences on impact magnitude confound estimated effects of the program components and 

implementation features that are the focus of the analysis. The context measures for this purpose include 

local community characteristics, the collective characteristics of program participants at a site (to control 

for possible peer effects on impact), and further program components and implementation features not 

already included in the model (i.e., not of primary interest).  

3.1 Building Intuition for the CAMIC Method 

The CAMIC method identifies the non-experimental model that most closely reproduces the experimental 

result for a particular program component. We hypothesize that this model will also produce less-biased 

estimates of the impact contributions of other non-randomized program components and/or 

implementation features. Whether this proves true will depend on how much commonality there is among 

the omitted factors that influence the choices sites make in what program components to offer and how to 

implement them.  

Bias stems from unobserved factors that influence both the choices that define the program and the 

program impact directly. If the same unobserved factor—such as the talent of the program 

administrator—affects the program’s choice to offer (or not offer) program components #1 and #2, then 

the bias in the estimates of the impact contributions for these two components is related. In this case, 

reducing the bias in the estimate of the impact contribution of program component #1 may reduce the bias 

in the estimate of the impact contribution of program component #2. 
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Alternately, there may be multiple unobserved factors that are related to program effectiveness but 

unrelated to one another; these include, for example, the skill of the case managers and the quality of the 

instruction offered. If the skill of the case managers is related to program component #1 and the quality of 

instruction is related to program component #2, then the bias in the two program components is coming 

from different sources. Reducing the bias in program component #1 involves controlling for the skill of 

the case managers, which does not reduce the bias in program component #2 which stems from 

unobserved quality of instruction. 

Most likely, both scenarios are true to some extent. We expect that there is an unobserved factor that 

affects bias in estimates of impact contributions for all program components and implementation features, 

and there are also additional unobserved factors that are related to only a few of the measured components 

and features. How much reducing the bias in the estimate of the impact contribution of program 

component #1 can reduce the bias in the impact contribution of program component #2 could be 

investigated using HPOG data. We will be able to calculate an experimental estimate of the impact 

contribution of both facilitated peer support and emergency assistance. We could apply the CAMIC 

method to minimize the bias in the contribution of facilitated peer support and then compare the non-

experimental estimate of the impact contribution of emergency assistance to the experimental estimate. 

Until the HPOG data are available to the study team, this paper provides a test by use of simulations. 

3.2 Deriving the Experimental Benchmark 

In this section, we describe how researchers can use three-armed random assignment to experimentally 

estimate the impact of a program component offered as an enhancement in the sites with the additional, 

third treatment arm. Notationally, consider the experimental design summarized in Exhibit 2 (right side), 

where individuals in a subset of sites j =1, ... , J* (J* < J) are randomly assigned to one of three arms: a 

standard treatment group, an enhanced treatment group (that receives the standard treatment plus an 

enhancement component), or a control group (that has no access to the program). In all other sites j = 

J*+1, ... , J, individuals are randomized to just two arms: a standard treatment group (where the treatment 

does not include the enhancement) and a control group. 

The experimental estimate of the impact of the enhancement can be computed under these circumstances 

using a two-level model and an analysis sample limited to sites j =1, ... , J* with three-armed random 

assignment. The Level One regression equation depicted by Equation (5) below—which parallels the 

earlier Equation (1) with modifications—uses data on individuals in site j to model the relationship 

between an outcome Y and an overall treatment indicator (which denotes whether the participant was 

assigned to either standard treatment or enhanced treatment) and an enhanced treatment indicator, while 

controlling for individual characteristics. The impact coefficients of interest in this equation (𝛽𝑗  and 𝜋𝑒𝑗) 

and the control group mean (𝛼𝑗) in each site serve as the dependent variables for Level Two of the model, 

as depicted in Equations (6), (7), and (8). Exhibit 1 defines these terms. 

 

Level One: Individuals 

 

𝑌𝑗𝑖 = 𝛼𝑗 + 𝛽𝑗𝑇𝐸𝑗𝑖 + 𝜋𝑒𝑗𝐸𝑗𝑖 + 𝜀𝑗𝑖           (Eq. 5) 
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Level Two: Sites 

 

𝛽𝑗  = 𝛽0 + 𝜇𝑗               (Eq. 6) 

 

𝜋𝑒𝑗  = 𝜋𝑒 + 𝜔𝑗               (Eq. 7) 

 

and: 

 

𝛼𝑗 = 𝛼0 + 𝑣𝑗               (Eq. 8) 

 

We can simplify the above two-level model by substituting Equations (6), (7), and (8) into Equation (5), 

which produces the following single equation: 

 

𝑌𝑗𝑖 = 𝛼0 + 𝛽0𝑇𝐸𝑗𝑖 + 𝜋𝑒𝐸𝑗𝑖 + {𝑣𝑗 + 𝜇𝑗𝑇𝐸𝑗𝑖 + 𝜔𝑗𝐸𝑗𝑖 + 𝜀𝑗𝑖}    (Eq. 9) 

 

Estimating Equation (9) through linear regression, we obtain—among other things—an estimate �̂�𝑒
𝑋 of 𝜋𝑒 

straight from the experiment, based on purely random variation in which individuals receive a program 

that includes the enhancement element e and which individuals do not. The X superscript denotes the 

unbiased experimental nature of this estimate. 

3.3 Using the Experimental Estimate to Calibrate the Non-Experimental Model 

The CAMIC method selects the set of impact moderators that produces the smallest measured difference 

between the experimental estimate of the impact contribution of the enhancement, �̂�𝑒
𝑋 above, and a non-

experimental estimate of the impact contribution of that same component.  

The first step in implementing this method has just been described: experimentally estimating the effect 

of the enhancement in the three-armed sites. From there, applying the CAMIC approach produces non-

experimental estimates of the impact contribution of that program component and other site-level 

moderators by including different combinations of site-level measures as covariates in the analytic model. 

In its final steps, the CAMIC method generates the set of site-level covariates that minimizes the 

measured difference between the experimental and non-experimental estimates of the impact of the 

enhancement—and uses the same site-level covariates to produce non-experimental estimates of the 

contribution of other program components or implementation features to the program’s overall impact.  

Those steps proceed as follows: 

Step 1. Compute an experimental estimate of the impact of the enhancement (�̂�𝑒
𝑋) using data from sites 

that conduct three-armed random assignment.  

Step 2. Compute a non-experimental estimate of the impact of the enhancement (�̂�𝑒
𝑁) by estimating 

Equation (4). To produce this estimate, the sample is limited to (1) the control and enhanced treatment 

arms from sites that conducted three-armed random assignment using the enhancement and (2) the control 

and standard treatment arms from sites that did not use the enhancement. Sample members randomly 

assigned to the standard treatment arm in sites that conduct three-armed random assignment are excluded 
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from this analysis to “pretend” that these sites had chosen to use that same component e as part of their 

standard program.3 This forces us to estimate the effect of program component e as we would without 

randomization of its use between two experimental arms. The Level Two moderators in Equation (4) help 

remove confounding bias from the �̂�𝑒
𝑁 estimator. 

Step 3. Analyze all combinations of variables (subject to degrees of freedom limitations) in Equation (4) 

to find the set of Level Two moderators that produces the non-experimental estimate of the 

enhancement’s contribution to program impact with the least measured bias, where bias is measured 

subject to sampling variability as |�̂�𝑒
𝑁 − �̂�𝑒

𝑋|. Potential variables for this bias reduction exercise include 

program components and implementation features of secondary interest, participant composition 

measures, and local context measures.4  

Step 4. Compute cross-site estimates of the contributions of program components to impact magnitude 

(�̂�1
𝑁,..., �̂�𝑒

𝑁,..., �̂�𝑀
𝑁 ) and the contributions of implementation features to impact magnitude (�̂�1

𝑁 , … , �̂�𝐺
𝑁) 

while controlling for the set of moderators selected in Step 3, using maximum likelihood estimation 

methods from Bryk and Raudenbush (1992). This estimation uses the entire sample, across all sites and 

including individuals from all three randomization arms to gain greater statistical precision in all the 

coefficient estimates, including the estimates of the components’ and features’ contributions to impact 

magnitude.  

To incorporate the full sample, modifications are made to the earlier cross-site attributional model that 

resulted in Equation (4) earlier. These modifications are detailed in Appendix B and add terms to 

Equation (4) to create in a full-sample analysis that includes both two-armed and three-armed sites a 

distinction between the impact contributions of program components in the standard treatment arms of the 

various sites and the impact contribution of the enhancement in the three-armed sites.  

                                                      

3 This necessitates replacing Tji in Equation (4)—which distinguishes between standard treatment group members 

and control group members—with TEji (see Exhibit 1 in Section 2 for definitions), which distinguishes between 

enhanced treatment group members of all sorts and all control group members. Pej also needs to be replaced with 

P*ej, which equals Pej in the two-armed sites that are used at this step (which, by construction, all have Pej = 0) and 

equals 1 in the three-armed sites.  
4 Note that adding a covariate as an impact moderator to an attributional model may actually increase omitted 

variable bias, even if the added variable is highly correlated with omitted confounders (Steiner & Kim, 2015). One 

goal of the CAMIC method is to avoid this mistake. This perverse result can arise from two phenomena: (1) bias 

amplification and (2) removing the benefit of offsetting biases. Bias amplification occurs when conditioning on the 

new variable amplifies the bias caused by the omitted, unobserved confounder by increasing the correlation between 

the unobserved confounder and other included variables of interest. It is also possible that two omitted confounders 

initially induced bias in opposite directions, and that the benefit of these offsetting biases is lost when one but not 

both confounders is added to the specification. 



 

Abt Associates Using Within-Site Experimental Evidence to Reduce Cross-Site Attributional Bias ▌pg. 16 

4. Simulation Exercise 

The CAMIC method is used to leverage experimental evidence to reduce bias in non-experimental 

estimates of the influence of program components and implementation features on a program’s total 

impact. To investigate whether the CAMIC method might help accomplish this goal, we conduct 

simulations that explore the method in a simplified theoretical framework.  

The simplification is possible because the relationships of interest here are at the site level. Random 

assignment of individuals within sites is important in a multi-site trial because it allows us to calculate 

site-level impacts. However, once that is done, we can explore the relationship between the variation 

across sites in measured impact and the variation across sites in a range of measures that may influence 

impact. Those measures include the program components and implementation features used in the 

program in any site, local context measures, and indicators of the composition of program participants. 

For example, such an exploration can be undertaken by estimating a site-level regression that expresses 

estimated impact in a site as a linear function of site-level measures of all these measures.  

A more sophisticated multi-level modeling approach, such as that described above in Equations (1) 

through (3), integrates these steps and provides correct standard errors for hypothesis testing. As a result, 

it is the preferred approach to analyzing data in practice. However, to explore the CAMIC method, we can 

focus on just the site-level regression. This captures the relationships of interest between impacts and the 

impact moderators in the various categories noted. It also captures the source of bias in the standard non-

experimental measures of the effects of those moderators: omitted causal factors at the site level.  

Bias arises when program components and implementation features are correlated with site-level factors 

that also influence impacts but that are omitted from the analysis. These factors—often omitted because 

they are unobserved in the data—may include aspects of the program that administrators choose (e.g., an 

unmeasured program component or implementation feature), aspects of the program context that are 

beyond their control (e.g., the local unemployment rate), and other unobserved factors that influence both 

the program components and implementation features and the impacts of the program (e.g., the raw talent 

of the program leadership). For all of these types of unobserved factors, if program components and 

implementation features are correlated with unobserved factors, the estimated influence of those 

components and features will reflect the influence of the unobserved factors.  

The simplified framework used for our simulations focuses on the site-level relationship between the true 

impact of a program (∆) and three program components (𝑃1, 𝑃2, 𝑃3), all of which are correlated with an 

unobserved, site-level factor (𝜇).5 This relationship is given by 

∆𝑗= 𝜋0 + 𝜋1𝑃1𝑗 + 𝜋2𝑃2𝑗 + 𝜋3𝑃3𝑗 + 𝜇𝑗 + 𝜀𝑗 ,           (Eq. 5) 

where:  

                                                      

5 Although we refer to the observed, site-level factors as program components here, they could be recast as any 

combination of program components, implementation features, local context, and participant composition without 

changing the approach or conclusions. 
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 𝑗 indexes programs; 𝑗 = 1,2, … , 𝐽, 

 ∆𝑗 is the impact of the program implemented by site 𝑗, 

 𝑃𝑚𝑗 is a continuous measure of the extent to which program 𝑗 implemented program component 𝑚, 

 𝜋𝑚 is the influence of program component 𝑚 on the program’s impact, 

 𝜋0 is the mean impact of the program, 

 𝜇𝑗 is a site-specific, unobserved factor that is correlated with observed program components, and 

 𝜀𝑗 is an error term unrelated to the observed program components. 

In Appendix C, we derive an expression for the bias in the estimates of 𝜋0, 𝜋1, 𝜋2, 𝜋3. The estimate of the 

constant is unbiased. The bias in the coefficients of program components is the statistical expectation of a 

non-linear function of (1) the observed variance for each program component, (2) the observed 

covariance between each of the program components, and (3) the realized (but unobserved) covariance 

between each program component and the unobserved factor. The bias does not depend on the true 

influence of the program components on impact or on the variance of the unobserved factor.  

In the expanded expression of bias in Appendix C, we see that bias is ultimately due to the correlation 

between program components and the omitted factor: each term in the numerator includes the covariance 

of one of the program components and the omitted factor. We can think of the correlation between the 

first program component and the omitted factor as the direct source of bias in estimates of the influence of 

that program component. If the covariance between the program components is set to 0, then the 

expression for bias simplifies to include only this direct effect. However, when the program components 

are correlated with one another, the bias in the first program component is also affected by the correlation 

between the omitted factor and the other two components. This is because the bias in the first program 

component is indirectly affected by the omitted factor through its correlation with the other program 

components.  

When all program components are correlated with one another and with the omitted factor—as is most 

likely the case in any real-world application—the expression for bias does not yield simple statements 

about when bias will be larger or smaller. This is because the effect of increasing the value of a particular 

correlation depends on the values of all the other terms. For example, increasing the correlation between 

program component #1 and the omitted factor would increase the magnitude of the terms in which it 

appears. However, when those terms are added to the other terms, it might reduce bias in program 

component #1 if, say, the remaining terms were of opposite sign and the two sources of bias offset each 

other.  

4.1 The CAMIC Method in a Simplified Simulation Framework 

Suppose that we observe an unbiased measure of the true value of π1 and that our goal is to obtain an 

estimate of π2. In this case, the CAMIC method uses this unbiased estimate of π1 to select the least 

biased specification between the following models: 

Model 1:  ∆𝑗= 𝜋0
1 + 𝜋1

1𝑃1𝑗 + 𝜋2
1𝑃2𝑗 + 𝜋3

1𝑃3𝑗 + 𝑢𝑗
1 
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Model 2:  ∆𝑗= 𝜋0
2 + 𝜋1

2𝑃1𝑗 + 𝜋2
2𝑃2𝑗 + 𝑢𝑗

2 

Note that we do not consider models that omit 𝑃1 or those that omit 𝑃2. Execution of the CAMIC method 

requires that 𝑃1, the program component that was randomly assigned to sites, be included in the analysis. 

Furthermore, the model must include 𝑃2 because the goal of the exercise is to obtain the least biased 

estimate of π2, the coefficient on 𝑃2. We refer to 𝑃1 as the “reference component” and 𝑃2 as the “focal 

component.” 

The error terms for these models include multiple terms. In the first model, the error term includes the 

unobserved factor: 

𝑢1𝑗 = 𝜇𝑗 + 𝜀𝑗 

The error term in the second model includes both the unobserved factor and the influence of the omitted 

program component: 

𝑢2𝑗 = 𝜋3𝑃3𝑗 + 𝜇𝑗 + 𝜀𝑗 

In Model 1, bias arises from the correlation between the omitted factor and the program components as 

discussed above. In addition, in Model 2, the omitted program component in the error term may 

contribute positively or negatively to the omitted-variable bias, yielding bias that is either larger or 

smaller than the bias from Model 1.  

In Appendix C, we derive an expression for the bias in Model 2. This expression is similar to the one 

derived for Model 1—it is the statistical expectation of a non-linear function of many variables. However, 

the coefficient of the third program component affects bias in Model 2 because it appears in the error term 

and thereby affects the omitted-variable bias.  

4.2 Simulation-Based Exploration of Bias 

To understand the CAMIC method’s potential to reduce bias in our estimate of 𝜋2, we seek to understand 

whether the least biased specification for the randomized enhancement (𝑃1 in the above example) 

reference component is also the least biased specification for the target non-randomized program 

component (𝑃2 in the above example). Because we cannot take the expectation of the expression of the 

bias directly, we use simulation-based Monte Carlo integration to calculate the bias for particular sets of 

parameters to explore bias for a range of parameters. 

Using Monte Carlo integration involves repeatedly generating values for random variables and calculating 

the value of the function for that value. After a large number of repetitions, the average of the observed 

value of the function gives the statistical expectation. Applying this process to calculating bias, we draw 

observations of the three program components and the omitted factor and calculate the bias in each model 

for the simulated dataset. Then, we calculate the mean bias in Model 1 and the mean bias in Model 2 

across all the simulations. Finally, we consider whether the model that produces the least biased estimate 

of the reference component (𝜋1) also minimizes the bias in the focal component (𝜋2). We consider results 

favorable to the CAMIC method if the least biased model for 𝜋1 is also the least biased model for 𝜋2 and 

unfavorable otherwise. 
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We assume that the program components and the omitted factor are normally distributed with mean 0 and 

a standard deviation of 1. The key parameters that determine the bias are the correlations among the 

observed program components (𝜌12, 𝜌13, 𝜌23), the correlation of each observed program component with 

the observed factor (𝜌1𝜇 , 𝜌2𝜇 , 𝜌3𝜇), and the true influence of the third program component on impact (𝜋3). 

To calculate bias, we must select a value for each of these seven parameter values.  

Given the large number of possible combinations of parameter values, we must be strategic in selecting a 

relatively limited number of simulations that help us understand the range of possible biases. We first 

identify possible values for the observed parameters and refer to each of these values as a scenario. Then, 

for each scenario, we run 500 different simulations to capture a broad range of values of the unobserved 

parameters. We calculate the proportion of these simulations that are favorable to the CAMIC method for 

a particular scenario. This structure allows someone to consider which of our scenarios is most similar to 

the correlations they observe in their data. 

Exhibit 3 describes the scenarios we investigate. We define sets of scenarios to answer the questions: 

 How do the signs of the observed correlations affect the CAMIC method’s potential? 

 How does the overall magnitude of the observed correlations affect the CAMIC method’s potential? 

 How does the relative magnitude of the observed correlations affect the CAMIC method’s potential? 

Exhibit D.1 in Appendix D lists the full details for each of the 35 scenarios. 

Exhibit 3. Characteristics of Scenarios Examined to Analyze the CAMIC Method’s Potential 

Scenarios 
Focus of 

Exploration Description 

1-8 Sign These scenarios set the magnitude of all correlations to 0.25 and systematically explore all 
possible combinations of sign for the three correlations. 

9-21 Magnitude These scenarios systematically increase the magnitude of the correlations while holding these 
correlations equal to one another. The scenarios move from (𝜌12 = 𝜌13 = 𝜌23 = 0.10) to 
(𝜌12 = 𝜌13 = 𝜌23 = 0.70). 

22-29 Relative 
Magnitude 

These scenarios change the correlation of one program component at a time and 
systematically explore all possible combinations of 0.25 and 0.50 as the value for the three 
correlations. 

30-35 Relative 
Magnitude 

These scenarios systematically explore correlations defined by all possible orderings of 
(0.25,0.50,0.70). 

 

4.3 Simulation Findings 

Exhibits 4 through 6 below present the results separately for three scenarios. The specific scenarios were 

selected to show the range of findings. Exhibit 4 displays results for the scenario with the least favorable 

findings for the CAMIC method; Exhibit 5 shows the scenario with the most favorable findings for the 

CAMIC method; and Exhibit 6 shows the scenario with the most typical findings in terms of favorability 

for the CAMIC method. Each exhibit comprises 20 color-coded panels in a grid of five rows and four 
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columns. Altogether, we estimate the bias for 500 distinct specifications of unobserved parameters for 

each overarching scenario.  

When presenting our findings for each scenario, we use the following color scheme:  

The exhibits that follow show patterns of specifications that are favorable to the CAMIC method (green) 

and that are not favorable to the CAMIC method (red).  

In each exhibit, the top left panel displays the results for the specifications with a particular value of the 

coefficient of 𝑃3 and of the correlation between the reference component 𝑃1 and the omitted factor 𝜇: 

𝜋3 = −0.50 and 𝜌1𝜇 = −0.50. The panel includes 25 different specifications that capture variation in the 

correlation between the focal component 𝑃2 and the omitted factor 𝜇, and in the correlation between 𝑃3 

and the omitted factor 𝜇. The top left cell in the panel sets both these correlations 𝜌2𝜇 = 𝜌3𝜇 = −0.50. 

Moving right across the panel, the correlation between 𝑃3 and the omitted factor 𝜇 increases to 𝜌3𝜇 =

0.50. Moving down the panel, the correlation between 𝑃2 and the omitted factor 𝜇 increases to 𝜌2𝜇 =

0.50. In Exhibit 4, results are favorable to the CAMIC method (green) when the correlation between the 

focal component 𝑃2 and the omitted factor 𝜇 is −0.50 and also when the correlation between focal 

component 𝑃2 and the omitted factor 𝜇 is −0.25 and the correlation between 𝑃3 and the omitted factor 𝜇 is 

0.00 or greater. 

Comparing columns of panels with one another isolates changes in the coefficient of 𝑃3(𝜋3). These 

changes affect the omitted-variable bias in Model 2 and have no effect on the bias in Model 1. Comparing 

rows of panels with one another isolates changes in the correlation between the reference component 𝑃1 

and the omitted factor 𝜇 (𝜌1𝜇). Moving from the top row of panels to the middle row of panels, this 

correlation increases from 𝜌1𝜇 = −0.50 to 𝜌1𝜇 = 0.00.  

For the middle row of panels, there is no direct source of bias in the estimate of the influence of the 

reference component; all bias works through the correlation between the reference component and the 

other two components. The center of each panel in the middle row sets the correlation between each 

program component and the omitted factor to zero, 𝜌1𝜇 = 𝜌2𝜇 = 𝜌3𝜇 = 0.00, eliminating that source of 

bias. For these results, omitted-variable bias in Model 2 is the only source of bias.  

Across all exhibits, results are favorable to the CAMIC method when program components are not 

correlated with the omitted factor. 

  

1.00 least biased model for 𝜋1 is also the least biased model for 𝜋2 (green) 

2.00 least biased model for 𝜋1 is not the least biased model for 𝜋2 (red) 
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Exhibit 4. Scenario Least Favorable to the CAMIC Method: Constant Correlation among Program 
Components of 0.70 (𝝆𝟏𝟐 = 𝝆𝟏𝟑 = 𝝆𝟐𝟑 = 𝟎. 𝟕𝟎) 

 

Of scenario results presented here, 29% are green and favorable to the CAMIC method.  
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Exhibit 5. Scenario Most Favorable to the CAMIC Method: Program Component #1 Very Highly  
Correlated with Program Component #2 (ደሁሂ ታ ሀላ ሇሀ) and Highly Correlated with Program 
Component #3 (ደሁሃ ታ ሀላ ህሀ); Program Component #2 Somewhat Correlated with Program 
Component #3 (  ደሂሃ ታ ሀላ ሂህ)  

Of scenario results presented here, 83% are green  and favorable to the CAMIC method.  
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Exhibit 6. Scenario Most Typical of Favorability to the CAMIC Method: Program Component #1 
Somewhat Correlated with Program Component #2 (𝛒𝟏𝟐 = 𝟎. 𝟐𝟓) and Very Highly Correlated with 
Program Component #3 (𝛒𝟏𝟑 = 𝟎. 𝟕𝟎); Program Component #2 Highly Correlated with Program 
Component #3 ( 𝛒𝟐𝟑 = 𝟎. 𝟓𝟎) 

 

Of scenario results presented here, 54% are green and are favorable to the CAMIC method.  
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The scenarios presented in Exhibits 4 through 6 were selected to illustrate the range of findings across all 

scenarios. Among all scenarios investigated, the scenario presented in Exhibit 4 is least favorable to the 

CAMIC method with 29 percent of results favorable; the scenario presented in Exhibit 5 is the most 

favorable to the CAMIC method with 83 percent of results favorable. Across all findings for all scenarios, 

53 percent of results were favorable to the CAMIC method. The scenario presented in Exhibit 6 comes 

closest to representing this average, with 54 percent of results favorable to the CAMIC method. 

Taken together, Exhibits 4 through 6 demonstrate no obvious pattern of characteristics that produce 

results favorable to the CAMIC method. For example, the top panels of Exhibit 4 show results favorable 

to the CAMIC method in the top cells (𝜌1𝜇 = 𝜌2𝜇 = −0.50), while these same cells are unfavorable to 

the CAMIC method in Exhibit 5. For each of these exhibits, the correlations among the program 

components, which are observable, are held constant; the correlation between each program component 

and the omitted factor and the coefficient of the third program component are allowed to vary. The lack of 

pattern across exhibits indicates that there is no pattern in unobservable characteristics associated with 

results that are more favorable to the CAMIC method. Without a pattern of favorable results, we are 

unable to identify conditions on the unobserved parameters that would yield results favorable to the 

CAMIC method. Doing so would have been useful in situations where suppositions about those 

parameters could help to enhance confidence in applying the method.  

We next consider whether characteristics of observed parameters are associated with results more 

favorable to the CAMIC method. 

Exhibits 7 through 9 summarize all scenarios investigated, presenting the proportion of results favorable 

to the CAMIC method for each of the specifications of the observed correlations among program 

components. Exhibit 7 displays results for all possible combinations of negative and positive signs for the 

correlations, holding the magnitude of the correlations constant at 0.25. For Scenarios 1, 4, 6, and 7, some 

40 percent of findings are favorable to the CAMIC method. For Scenarios 2, 3, 5, and 8, some 66 percent 

of findings are favorable to the CAMIC method. The number of positive signs appears to determine the 

split: scenarios with an even number of negative correlations have 40 percent favorable, while scenarios 

with an odd number of negative correlations have 60 percent favorable. This is likely because an even 

number of negative terms multiplied together is positive. While sign appears to affect the findings to 

some extent, it does not appear to be a major source of variation in favorability to the CAMIC method. 

Exhibit 7. Results for Scenarios, Focused on the Sign of the Correlations (Magnitudes Set to 0.25) 

Scenario 

 
Sign 

Simulations Favorable  
to the CAMIC Method 

𝛒𝟏𝟐 𝛒𝟏𝟑 𝛒𝟐𝟑 N Percent 

1 + + + 200 40 

2 + - + 330 66 

3 + + - 330 66 

4 + - - 200 40 

5 - + + 330 66 

6 - - + 200 40 

7 - + - 200 40 

8 - - - 330 66 
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Exhibit 8 displays results for scenarios with correlations increasing in magnitude. The correlations are 

equal to one another and increase from (𝜌12 = 𝜌13 = 𝜌23 = 0.10) to (𝜌12 = 𝜌13 = 𝜌23 = 0.70). The 

proportion of results favorable to the CAMIC method does not consistently increase or decrease as the 

magnitude increases. Rather, the proportion of scenarios favorable to the CAMIC method increases 

slightly from Scenario 9 to 12, then decreases from Scenario 12 to 16, increasing to Scenario 17 and then 

decreasing to Scenario 21. While the proportions do not vary over a wide range, the pattern of increases 

and decreases illustrates the nonlinearity of the relationship. If we used computational techniques to find 

the scenario with the maximum favorability to the CAMIC method, the approach to searching would be 

thrown off by the number of small peaks and valleys. 

Exhibit 8. Results for Scenarios, Focused on the Magnitude of the Correlations 

Scenario 

 
Value 

Simulations Favorable 
to the CAMIC method 

𝝆𝟏𝟐 𝝆𝟏𝟑 𝝆𝟐𝟑 N Percent 

9 0.10 0.10 0.10 192 38 

10 0.15 0.15 0.15 192 38 

11 0.20 0.20 0.20 192 38 

12 0.25 0.25 0.25 200 40 

13 0.30 0.30 0.30 192 38 

14 0.35 0.35 0.35 188 38 

15 0.40 0.40 0.40 180 36 

16 0.45 0.45 0.45 176 35 

17 0.50 0.50 0.50 188 38 

18 0.55 0.55 0.55 156 31 

19 0.60 0.60 0.60 152 30 

20 0.65 0.65 0.65 144 29 

21 0.70 0.70 0.70 144 29 

 

Exhibit 9 presents results for scenarios that focus on the relative magnitude of the correlations. First, we 

consider all possible combinations of 0.25 and 0.50 as the value for the three correlations, including all 

correlations set to 0.25, all possible orderings of (0.50, 0.25, 0.25), all possible orderings of (0.50, 0.50, 

0.25), and all correlations set to 0.5. Then, we consider all possible orderings of (0.70, 0.50, 0.25).  

This exhibit presents the broadest range of findings, ranging from scenarios with 31 percent of 

simulations favorable to the CAMIC method to a scenario with 83 percent favorable to the CAMIC 

method. Comparing across scenarios, we see that a change in a single correlation can result in a large shift 

in findings or a minor shift, depending on the correlation and the starting point. For example, in scenarios 

26 and 30, an increase in the correlation between program components #1 and #2 from 0.50 to 0.70 is 

associated with an increase in the proportion of simulations favorable to the CAMIC method from 43 to 

83 percent. However, for scenarios 24 to 27, an increase of similar size in the correlation between 

program components #1 and #2 from 0.25 to 0.50 is associated with an increase in the proportion of 

simulations favorable to the CAMIC method from 40 to 43 percent.  
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Exhibit 9. Results for Scenarios, Focused on the Relative Magnitude of the Correlations 

 
 

Scenario 

 
Value 

Simulations Favorable 
to the CAMIC method 

𝝆𝟏𝟐 𝝆𝟏𝟑 𝝆𝟐𝟑 N Percent 

All correlations set to 0.25 

22 0.25 0.25 0.25 200 40 

All possible orders of (0.50,0.25,0.25) 

23 0.50 0.25 0.25 156 31 

24 0.25 0.50 0.25 200 40 

25 0.25 0.25 0.50 204 41 

All possible orders of (0.50,0.50,0.25) 

26 0.50 0.50 0.25 214 43 

27 0.50 0.25 0.50 274 55 

28 0.25 0.50 0.50 238 48 

All correlations set to 0.50 

29 0.50 0.50 0.50 188 38 

All possible orders of (0.70,0.50,0.25) 

30 0.70 0.50 0.25 416 83 

31 0.50 0.70 0.25 374 75 

32 0.70 0.25 0.50 416 83 

33 0.50 0.25 0.70 374 75 

34 0.25 0.70 0.50 272 54 

35 0.25 0.50 0.70 272 54 

 

Although the specific proportions may be an artifact of the particular values of unobserved parameters we 

selected for the simulations, these findings fail to provide evidence supporting the intuition that the 

CAMIC method should help to reduce bias through better decisions over which variables to include in the 

model. These results demonstrate that the model that minimizes bias for the reference program 

component does not necessarily minimize bias for the focal program component.  

These simulations calculate the bias in each model and compare them. By focusing on bias, the 

simulations ignore the role that variance might play in the CAMIC method. The estimates the CAMIC 

method works with differ from the true parameter value due to both bias and sampling variability in real 

data. The CAMIC method selects the model with the noisy measure of the reference component that is 

closest to the noisy, experimental measure of the reference component. Although the CAMIC method 

seeks to select the model that yields the least biased estimate of the reference component, noise in the 

estimates may result in selecting the wrong model. This limitation of the CAMIC method is not reflected 

in the simulations. However, the simulations show that even if the CAMIC method is able to consistently 

select the model that minimizes bias for the reference component, that model may or may not minimize 

bias in the target component. 
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5. Discussion and Conclusion 

Large multi-site experiments with rich data on site and individual characteristics offer a unique 

opportunity to estimate the relationship between program components and implementation features and 

impact magnitude. However, if these program components and implementation features are not randomly 

assigned to individuals within sites (or to sites), then estimates of the relationship between them and 

impact magnitude may suffer from omitted-variable bias. In this paper, we provide a framework for 

leveraging the experimental evidence provided by a three-armed experiment to improve the non-

experimental estimates of the impact contribution of program components and implementation features 

that occur naturally in the program world.  

This inquiry parallels research considering “design replication studies,” also called “within-study 

comparison designs.” The goal of those studies (beginning with LaLonde, 1986) is to learn which 

approach to measuring program impact, subject to selection and other sources of bias using observational 

data, best replicates an experimental finding for the same impact quantity. A series of such studies has 

begun to point evaluators toward the conditions that yield more-reliable non-experimental findings than 

other options do (see Cook et al., 2008; Glazerman et al., 2003), when prior to LaLonde (1986) no 

empirical guide along that path was known. In a similar way, CAMIC method-based tests of cross-site 

impact attribution specifications may yield consistent results with enough replications—especially if 

multiple program components and/or implementation features can be randomized into enhanced treatment 

arms within a single multi-site study. Certainly as the state of the science of within-study comparisons 

improves, we should gain knowledge regarding the calibration of non-experimental to experimental 

results.  

That said, the potential benefit of using the CAMIC method is not simply to compare a non-experimental 

result with an experimental benchmark, but instead to use that comparison to improve other non-

experimental results. As such, the method advances design replication studies to extended applications. 

The evaluation challenge at hand is that of selection bias that occurs at the site level in multi-site 

evaluations with individual-level random assignment and results in omitted-variable bias in the estimates 

of the influence of selected program components and implementation features on overall impacts.  

The HPOG Impact Study may provide an opportunity to empirically gauge the utility of the CAMIC 

method from real-world data. This is because, as discussed earlier, HPOG randomizes three program 

components to additional treatment arms as enhancements to basic programs, each in a different set of 

sites. Those same program components—facilitated peer support groups, emergency assistance for 

specific needs, and noncash incentives that encourage desirable program outputs and outcomes—also 

exist naturally as part of certain standard programs.  

This presents an opportunity to test the CAMIC method’s success across different enhancement 

components. For example, researchers can check whether the CAMIC method model calibrated to 

replicate the experimental finding on peer support also gets the emergency assistance estimate right non-

experimentally—that is, it produces an emergency assistance estimate that aligns with experimental 

evidence on that component’s effect. Reversing this, researchers also can check whether the CAMIC 

method model calibrated to replicate the experimental finding on emergency assistance also accurately 

estimates the influence of peer support non-experimentally—that is, it produces a peer support estimate 
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that aligns with experimental evidence on that component’s effect. This cross-calibration, if you will, and 

associated impact estimation can be further enhanced by using the third component randomly assigned as 

an enhancement, noncash incentives. As a result, HPOG will have experimental evidence on the 

contribution of three program components with which to gauge the bias of non-experimental estimates of 

those same contributions, in its own within-study comparison. Moreover, HPOG has the opportunity to 

use each of these three “checks” of the success of the CAMIC method in the HPOG application to decide 

how much credence to give findings from—and to further attempt to improve findings from—non-

experimental CAMIC method-based estimates of the contributions of other program components and 

implementation features to program impact.  

Only a real-world application of this sort will be able to provide needed additional insights on the CAMIC 

method’s performance and utility. Having one lined up for the HPOG Impact Study is encouraging. We 

believe that HPOG’s “multiple-enhancement three-arm multi-site experimental” design provides a model 

for future social program evaluations aiming to focus on the relative effectiveness of selected program 

components in a rigorous way. 

While waiting for the HPOG outcome data to become available to the study team, this paper reports on 

simulations aimed at exploring the potential for the CAMIC method to succeed in these ways under 

various scenarios. In addition to the simulation results reported here, a prior simulation was conducted to 

explore the CAMIC method’s potential reliability in other respects. Neither of these two simulation 

studies has pointed to clear conditions for the CAMIC method’s success.  

The simulation exercises explored a range of scenarios using a simplified framework. The framework was 

developed to represent the key relationships in the analysis, and the scenarios were developed to 

systematically explore the range of possibilities. However, it remains possible that we would draw a 

different set of conclusions had we made different simplifying assumptions or explored a different set of 

scenarios. Future work might consider three extensions. First, we support efforts to determine the 

conditions under which the CAMIC method is an improvement over standard practice in producing 

minimally biased non-experimental estimates of the contribution of selected program components or 

implementation features to program impacts. Even if improvements cannot occur in the majority of cases 

(as our existing simulation investigations suggest, with results favoring the CAMIC method in between 

29 and 83 percent of the examined circumstances), at least (1) the limits on the CAMIC method’s utility 

could be better understood, and (2) there is a possibility to learn what characterizes the most favorable (or 

least favorable) conditions for its application.  

Second, we suggest exploring when multi-level modeling that is not in a position to use the CAMIC 

method as a tool can and cannot eliminate bias caused by omitted factors. We hypothesize that this kind 

of bias will remain an issue under many, perhaps increasingly complex, analytic strategies given the 

complex, non-linear dependencies among site-level variables. Knowledge of this sort would be of value to 

a field that is increasingly using multi-site evaluations with individual-level randomization to measure the 

contribution of program components and implementation features to program impacts in a multi-faceted 

program.  

Third—and we believe most valuable—would be future work that applies the CAMIC method to a variety 

of actual randomized impact evaluations in a range of settings. This will be facilitated by the increasing 
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use of multi-site experimental evaluation designs in general, offering more opportunities for creating a 

third experimental arm to measure the effect of individual elements within multi-faceted programs. 

HPOG will serve as the first such opportunity, and the first applied test of the CAMIC method. We hope 

the analysis team for that research will emerge with added insights and useful lessons for future 

evaluation design and analytic work to push forward innovative methods such as the CAMIC method that 

can help improve the capabilities of social program impact evaluators by expanding their toolkit. 
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Appendix A. Source of Omitted-Variable Bias in Non-Experimental 

Estimates 

Estimating the model described in Section 2 will produce estimates of the 𝜋𝑚 and 𝜑𝑔 parameters to 

describe the relationship between program components and implementation features and treatment 

impact. Omitted-variable bias arises in this analysis if a site-level factor Fj exists that (a) influences 

impact magnitude, (b) is not included as a right-hand-side variable in Equation (2) or Equation (4) of the 

Section 2 model, and (c) correlates with one or more of the components or features included as right-

hand-side variables in the model specification. Assuming that Fj has a linear influence—and that there is 

no interaction between it and the included components or features when determining impact magnitude—

the correct specification of Equation (2) from the main text is as follows: 

𝛽𝑗 = 𝛽0 + ∑ 𝜋𝑚 𝑃𝑚𝑗 +𝑚 ∑ 𝜑𝑔𝐼𝑔𝑗𝑔 + ∑ 𝜏𝑑𝑃𝐶𝑑𝑗𝑑 + ∑ 𝜁𝑞𝐿𝐶𝑞𝑗𝑞 + 𝜆𝐹𝑗 + 𝜇𝑗    (Eq. 2′) 

where: 

𝜆 = influence of the omitted factor on impact magnitude; and 

Fj = amount of omitted factor in site j. 

Here, Fj , if unmeasured, becomes an omitted confounder in the analysis of the determinants of impact 

magnitude described in the main text and revisited below. 

To see how bias arises, plug Equation (2′) and Equation (3) into Equation (1) to get: 

𝑌𝑗𝑖 = 𝛼0 + ∑ 𝜅𝑞𝐿𝐶𝑞𝑗𝑞 + 𝛽0𝑇𝑗𝑖 + ∑ 𝜋𝑚 𝑃𝑚𝑗𝑇𝑗𝑖 +𝑚 ∑ 𝜑𝑔𝐼𝑔𝑗𝑇𝑗𝑖𝑔 + ∑ 𝜏𝑑𝑃𝐶𝑑𝑗𝑇𝑗𝑖𝑑 +  

∑ 𝜁𝑞𝐿𝐶𝑞𝑗𝑇𝑗𝑖𝑞 + 𝜆𝐹𝑗 𝑇𝑗𝑖  + ∑ 𝛿𝑐𝐼𝐶𝑐𝑗𝑖𝑐 + ∑ 𝛾𝑐𝐼𝐶𝑐𝑗𝑖𝑐 𝑇𝑗𝑖 + { 𝑣𝑗 + 𝜇𝑗𝑇𝑗𝑖 + 𝜀𝑗𝑖}     (Eq. 4′) 

When this equation is estimated with maximum likelihood methods (Bryk & Raudenbush, 1992) with 

 𝐹𝑗 𝑇𝑗𝑖 omitted as in Equation (4), the probability limits of the resulting estimators of the 𝜋𝑚 and 𝜑𝑔 

coefficients, �̂�𝑚 and �̂�𝑔, do not equal 𝜋𝑚 and 𝜑𝑔. That is, the estimates of the contribution of every 

program component and implementation feature to impact magnitude are asymptotically biased. As an 

example, it can be shown that the asymptotic expectation of �̂�𝑚 in the special case where 𝐹𝑗 correlates 

with program component 𝑃𝑟𝑗 but not with any of the other right-hand-side variables in Equation (4′), is 

𝑝𝑙𝑖𝑚(�̂�𝑟 ) = 𝜋𝑟 + 𝜆 
Cov (𝑃𝑟𝑗,𝐹𝑗)

Var(𝑃𝑟𝑗)
 

(see Wooldridge, 2002, pp. 61-62). This equation aligns with the usual econometric formula for omitted-

variable bias, although it gives the relationship at the limit as sample size goes to infinity. The bias of �̂�𝑟 

can be derived from this probability limit as  

𝑏𝑖𝑎𝑠(�̂�𝑟) = 𝑝𝑙𝑖𝑚(�̂�𝑟) - 𝜋𝑟 = 𝜆
Cov (𝑃𝑟𝑗,𝐹𝑗)

Var(𝑃𝑟𝑗)
, 
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because Cov(Prj, Fj) ≠ 0, �̂�𝑟 from the mis-specified Equation (4) model is a biased estimate of 𝜋𝑟 even in 

very large samples, with bias that approaches 𝜆
Cov (𝑃𝑟𝑗,𝐹𝑗)

Var(𝑃𝑟𝑗)
 as sample size goes to infinity. The same 

argument can be made for all of �̂�1,..., �̂�𝑀 and �̂�𝑔1,..., �̂�𝑔𝐺 .  

The more general case where more than one right-hand-side variable in Equation (4′) correlates with Fj 

produces estimates for which 

𝑝𝑙𝑖𝑚(�̂�1) = 𝜋1 + Z1  

𝑝𝑙𝑖𝑚(�̂�𝑀) = 𝜋𝑀 + ZM 

𝑝𝑙𝑖𝑚(�̂�1) = 𝜑1 + W1  

𝑝𝑙𝑖𝑚(�̂�𝐺  ) = 𝜑𝐺  + WG,  

where Z1,..., ZM and W1,..., WM are all non-zero but have complex mathematical expressions not provided 

by Wooldridge. Regardless of their forms, 

𝑏𝑖𝑎𝑠(�̂�𝑚) = 𝑝𝑙𝑖𝑚(�̂�𝑚) - 𝜋𝑚= Zm ≠ 0 for m = 1,..., M, and 

𝑏𝑖𝑎𝑠(�̂�𝑔) = 𝑝𝑙𝑖𝑚(�̂�𝑔 ) - 𝜑𝑔=Wg ≠ 0 for g =1,..., G. 
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Appendix B. Full Specification of the CAMIC Method Step 4 Model to 
Accommodate Analysis of the Full Sample of Sites 

 

This appendix shows the modifications to Equation (4) in Section 2 that are necessary to estimate that 

model using data on all three experimental arms—standard treatment, enhanced treatment, and control 

group—in all evaluation sties. Specifically, the final step in the CAMIC method is estimated on the 

following model: 

 

Level One: Individuals 

 

 𝑌𝑗𝑖 = 𝛼𝑗 + 𝛽𝑗𝑇𝐸𝑗𝑖 + 𝜋𝑒𝑗𝐸𝑗𝑖 + ∑ 𝛿𝑐𝐼𝐶𝑐𝑗𝑖𝑐 + ∑ 𝛾𝑐𝐼𝐶𝑐𝑗𝑖𝑐 𝑇𝐸𝑗𝑖 + 𝜀𝑗𝑖   (Eq. 10) 

 

Level Two: Sites 

 

𝛽𝑗 = 𝛽0 + ∑ 𝜋𝑚 𝑃𝑚𝑗 +𝑚 ∑ 𝜑𝑔𝐼𝑔𝑗𝑔 + ∑ 𝜏𝑑𝑃𝐶𝑑𝑗𝑑 + ∑ 𝜁𝑞𝐿𝐶𝑞𝑗𝑞 + 𝜇𝑗  (Eq. 11) 

 

𝜋𝑒𝑗  = 𝜋𝑒 + 𝜔𝑗               (Eq. 12) 

 

and: 

 

𝛼𝑗 = 𝛼0 + ∑ 𝜅𝑞𝐿𝐶𝑞𝑗𝑞 + 𝑣𝑗            (Eq. 13) 

 

Combining the elements of the above two-level model produces the following: 

 

𝑌𝑗𝑖 = 𝛼0 + ∑ 𝜅𝑞𝐿𝐶𝑞𝑗𝑞 + 𝛽0𝑇𝐸𝑗𝑖 + ∑ 𝜋𝑚 𝑃𝑚𝑗𝑇𝐸𝑗𝑖 +𝑚 ∑ 𝜑𝑔𝐼𝑔𝑗𝑇𝐸𝑗𝑖𝑔 +  

∑ 𝜏𝑑𝑃𝐶𝑑𝑗𝑇𝐸𝑗𝑖𝑑 + ∑ 𝜁𝑞𝐿𝐶𝑞𝑗𝑇𝐸𝑗𝑖𝑞 + 𝜋𝑒𝐸𝑗𝑖 + ∑ 𝛿𝑐𝐼𝐶𝑐𝑗𝑖𝑐 + ∑ 𝛾𝑐𝐼𝐶𝑐𝑗𝑖𝑐 𝑇𝐸𝑗𝑖 +   

{𝑣𝑗 + 𝜇𝑗𝑇𝑗𝑖 + 𝜔𝑗𝐸𝑗𝑖 + 𝜀𝑗𝑖}            (Eq. 14) 

 

We can simplify Equation (14) by combining 𝜋𝑒𝑃𝑒𝑗𝑇𝐸𝑗𝑖  from the third summation term and 𝜋𝑒𝐸𝑗𝑖 to 

get the following: 

 

𝑌𝑗𝑖 = 𝛼0 + ∑ 𝜅𝑞𝐿𝐶𝑞𝑗𝑞 + 𝛽0𝑇𝐸𝑗𝑖 + ∑ 𝜋𝑚 𝑃𝑚𝑗𝑇𝐸𝑗𝑖 +𝑚≠𝑒 ∑ 𝜑𝑔𝐼𝑔𝑗𝑇𝐸𝑗𝑖𝑔 +  

∑ 𝜏𝑑𝑃𝐶𝑑𝑗𝑇𝐸𝑗𝑖𝑑 + ∑ 𝜁𝑞𝐿𝐶𝑞𝑗𝑇𝐸𝑗𝑖𝑞 + 𝜋𝑒(𝑃𝑒𝑗𝑇𝐸𝑗𝑖 + 𝐸𝑗𝑖) + ∑ 𝛿𝑐𝐼𝐶𝑐𝑗𝑖𝑐 +   

∑ 𝛾𝑐𝐼𝐶𝑐𝑗𝑖𝑐 𝑇𝐸𝑗𝑖 + {𝑣𝑗 + 𝜇𝑗𝑇𝑗𝑖 + 𝜔𝑗𝐸𝑗𝑖 + 𝜀𝑗𝑖}        (Eq. 15) 

 

Notation definitions appear in Exhibit 1. Note that Equation (10) is a modified version of Equation (1) 

where 𝑇𝑗𝑖—the indicator for whether a given study member is assigned to the standard treatment—is 

replaced by 𝑇𝐸𝑗𝑖—the indicator for whether a given study member is assigned to either the standard 

treatment or the enhanced treatment. Additionally, Equation (10) adds to Equation (1) a further randomly 

assigned program component in the enhancement arm, component m. Next, 𝜋𝑒, the coefficient on the 

indicator for randomization to that arm, 𝐸𝑗𝑖, gets its own expanded expression and error term in Equation 

(12) just as has 𝛽𝑗, the coefficient on the other randomization indicator in Equation (2)—when that 

indicator was 𝑇𝑗𝑖—and in Equation (11)—where that indicator is now 𝑇𝐸𝑗𝑖.
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Appendix C. Deriving Expressions for Bias in Simplified Framework 

To explore bias in the simplified framework, we move to matrix notation by stacking observations to 

consider the properties of the estimator.  

[

∆1
∆2
⋮
∆𝐽

]

⏟

𝐽 × 1

=
[

1 𝑃11
1 𝑃12

𝑃21 𝑃31
𝑃22 𝑃32

⋮ ⋮
1 𝑃1𝐽

⋮ ⋮
𝑃2𝐽 𝑃3𝐽

]

⏟            

𝐽 × 4

[

𝜋0
𝜋1
𝜋2
𝜋3

]

⏟

4× 1

+
[

𝜇1
𝜇2
⋮
𝜇𝐽

]

⏟

𝐽 × 1

+
[

𝜀1
𝜀2
⋮
𝜀𝐽

]

⏟

𝐽 × 1

 

∆= 𝑃𝜋 + 𝜇 + 𝜀 

Running ordinary least squares (OLS) yields: 

�̂� = (𝑃′𝑃)−1𝑃′∆ 

With expected value: 

𝐸{�̂�} = 𝐸{(𝑃′𝑃)−1𝑃′∆} 

= 𝐸{(𝑃′𝑃)−1𝑃′(𝑃𝜋 + 𝜇 + 𝜀)} 

=  𝐸{(𝑃′𝑃)−1𝑃′𝑃𝜋} + 𝐸{(𝑃′𝑃)−1𝑃′𝜇} + 𝐸{(𝑃′𝑃)−1𝑃′𝜀} 

= 𝜋 + 𝐸{(𝑃′𝑃)−1𝑃′𝜇} 

Therefore, bias is given by: 

𝐸{�̂�} − 𝜋 = 𝐸{(𝑃′𝑃)−1𝑃′𝜇} 

Note that the standard approach is to take this expectation conditional on the independent variables. 

However, that approach misrepresents the structure of uncertainty. It seems that the unobserved factor is 

likely realized either before the observed program components (if it is a characteristic of leadership) or at 

the same time as the observed program components (if it is an omitted program component). In either 

case, it does not seem useful to think of a world in which a program with a fixed set of components fields 

the intervention an infinite number of times with different values of the unobserved factor. Instead, it 

makes sense to conceive of a world in which programs simultaneously select observed and unobserved 

program components based on some distribution associating the two. So that is the world in which we 

explore bias. 

If the unobserved factor was conditionally independent of the program components (𝐸{𝜇|𝑃} = 0), then 

we could simplify this term as follows:  

𝐸{(𝑃′𝑃)−1𝑃′𝜇} =  𝐸𝑃{𝐸𝜇|𝑃{(𝑃
′𝑃)−1𝑃′𝜇|𝑃}} = 𝐸𝑃{(𝑃

′𝑃)−1𝑃′𝐸𝜇|𝑃{𝜇|𝑃}} = 𝐸𝑃{(𝑃
′𝑃)−1𝑃′0⃗ }

= 0 

However, in that case there is no bias and no reason to go forward with this method.  
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Given that the unobserved factor is related to one or more of the observed program components, the 

expression for the bias cannot be simplified further. We cannot distribute the expectation across the terms 

of the product, and the expectation of an inverse is not the inverse of the expectation. However, it is worth 

thinking through the interpretation of these terms to gain some intuition.  

Bias in Simplified Framework 

The term 𝑃′𝑃 includes estimates of the variance and covariance of the observed program components. 

𝑃′𝑃 =

[
 
 
 
 
 
 
 
 𝐽 ∑ 𝑃1𝑗

𝑗

∑ 𝑃1𝑗
𝑗

∑ 𝑃1𝑗
2

𝑗

∑ 𝑃2𝑗
𝑗

∑ 𝑃3𝑗
𝑗

∑ 𝑃1𝑗𝑃2𝑗
𝑗

∑ 𝑃1𝑗
𝑗

𝑃3𝑗

∑ 𝑃2𝑗
𝑗

∑ 𝑃1𝑗𝑃2𝑗
𝑗

∑ 𝑃3𝑗
𝑗

∑ 𝑃1𝑗
𝑗

𝑃3𝑗

∑ 𝑃2𝑗
2

𝑗
∑ 𝑃2𝑗

𝑗
𝑃3𝑗

∑ 𝑃2𝑗
𝑗

𝑃3𝑗 ∑ 𝑃3𝑗
2

𝑗 ]
 
 
 
 
 
 
 
 

 

= 𝐽

[
 
 
 
1 0
0  𝑉𝑎�̂�(𝑃1)

0 0
𝐶𝑜�̂�(𝑃1, 𝑃2) 𝐶𝑜�̂�(𝑃1, 𝑃3)

0 𝐶𝑜�̂�(𝑃1, 𝑃2)

0 𝐶𝑜�̂�(𝑃1, 𝑃3)

𝑉𝑎�̂�(𝑃2) 𝐶𝑜�̂�(𝑃2, 𝑃3)

𝐶𝑜�̂�(𝑃2, 𝑃3) 𝑉𝑎�̂�(𝑃3) ]
 
 
 

 

The term 𝑃′𝜇 includes the realized covariance between the program components and the unobserved 

factor that we would obtain if we observed the factor. 

𝑃′𝜇 =

[
 
 
 
 
 
 
 
 ∑ 𝜇𝑗

𝑗

∑ 𝜇𝑗𝑃1𝑗
𝑗

∑ 𝜇𝑗𝑃2𝑗
𝑗

∑ 𝜇𝑗𝑃3𝑗
𝑗 ]

 
 
 
 
 
 
 
 

= 𝐽

[
 
 
 

0
𝐶𝑜�̂�(𝜇, 𝑃1)

𝐶𝑜�̂�(𝜇, 𝑃2)

𝐶𝑜�̂�(𝜇, 𝑃3)]
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Multiplying out (𝑃′𝑃)−1𝑃′𝜇 yields the following (incredibly messy) expressions: 

(𝑃′𝑃)−1

=
1

𝐽 det (𝑃′𝑃)

∗  

[
 
 
 
 
det (𝑃′𝑃) 0

0               𝑉𝑎�̂�(𝑃2)𝑉𝑎�̂�(𝑃3) − 𝐶𝑜�̂�(𝑃2, 𝑃3)
2              

0 0
𝐶𝑜�̂�(𝑃1, 𝑃3)𝐶𝑜�̂�(𝑃2, 𝑃3) − 𝐶𝑜�̂�(𝑃1, 𝑃2)𝑉𝑎�̂�(𝑃3) 𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃2, 𝑃3) − 𝑉𝑎�̂�(𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)

0 𝐶𝑜�̂�(𝑃1, 𝑃3)𝐶𝑜�̂�(𝑃2, 𝑃3) − 𝐶𝑜�̂�(𝑃1, 𝑃2)𝑉𝑎�̂�(𝑃3)

0 𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃2, 𝑃3) − 𝑉𝑎�̂�(𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)

𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃3) − 𝐶𝑜�̂�(𝑃1, 𝑃3)
2 𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3) − 𝑉𝑎�̂�(𝑃1)𝐶𝑜�̂�(𝑃2, 𝑃3)

𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3) − 𝑉𝑎�̂�(𝑃1)𝐶𝑜𝑣(𝑃2, 𝑃3) 𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃3) − 𝐶𝑜�̂�(𝑃1, 𝑃3)
2 ]

 
 
 
 

, 

where det(𝑃′𝑃) =  𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2)𝑉𝑎�̂�(𝑃3) − 𝑉𝑎�̂�(𝑃1)𝐶𝑜�̂�(𝑃2, 𝑃3)
2 − 𝑉𝑎�̂�(𝑃3)𝐶𝑜�̂�(𝑃1, 𝑃2)

2 − 𝑉𝑎�̂�(𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)
2 + 2𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)𝐶𝑜�̂�(𝑃2, 𝑃3) 

 

(𝑃′𝑃)−1𝑃′𝜇

=

[
 
 
 
 
 
 
 
 
 

0

 (𝑉𝑎�̂�(𝑃2)𝑉𝑎�̂�(𝑃3) − 𝐶𝑜�̂�(𝑃2, 𝑃3)
2)𝐶𝑜�̂�(𝜇, 𝑃1) + (𝐶𝑜�̂�(𝑃1, 𝑃3)𝐶𝑜�̂�(𝑃2, 𝑃3) − 𝐶𝑜�̂�(𝑃1, 𝑃2)𝑉𝑎�̂�(𝑃3)) 𝐶𝑜�̂�(𝜇, 𝑃2) + (𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃2, 𝑃3) − 𝑉𝑎�̂�(𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)) 𝐶𝑜�̂�(𝜇, 𝑃3)

 𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2)𝑉𝑎�̂�(𝑃3) − 𝑉𝑎�̂�(𝑃1)𝐶𝑜�̂�(𝑃2, 𝑃3)
2 − 𝑉𝑎�̂�(𝑃3)𝐶𝑜�̂�(𝑃1, 𝑃2)

2 − 𝑉𝑎�̂�(𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)
2 + 2𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)𝐶𝑜�̂�(𝑃2, 𝑃3)

 (𝐶𝑜�̂�(𝑃1, 𝑃3)𝐶𝑜�̂�(𝑃2, 𝑃3) − 𝐶𝑜�̂�(𝑃1, 𝑃2)𝑉𝑎�̂�(𝑃3)) 𝐶𝑜�̂�(𝜇, 𝑃1) + (𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃3) − 𝐶𝑜�̂�(𝑃1, 𝑃3)
2)𝐶𝑜�̂�(𝜇, 𝑃2) + (𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3) − 𝑉𝑎�̂�(𝑃1)𝐶𝑜�̂�(𝑃2, 𝑃3)) 𝐶𝑜�̂�(𝜇, 𝑃3)

 𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2)𝑉𝑎�̂�(𝑃3) − 𝑉𝑎�̂�(𝑃1)𝐶𝑜�̂�(𝑃2, 𝑃3)
2 − 𝑉𝑎�̂�(𝑃3)𝐶𝑜�̂�(𝑃1, 𝑃2)

2 − 𝑉𝑎�̂�(𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)
2 + 2𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)𝐶𝑜�̂�(𝑃2, 𝑃3)

 (𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃2, 𝑃3) − 𝑉𝑎�̂�(𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)) 𝐶𝑜�̂�(𝜇, 𝑃1) + (𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3) − 𝑉𝑎�̂�(𝑃1)𝐶𝑜𝑣(𝑃2, 𝑃3)) 𝐶𝑜�̂�(𝜇, 𝑃2) + (𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃3) − 𝐶𝑜�̂�(𝑃1, 𝑃3)
2)𝐶𝑜�̂�(𝜇, 𝑃3)

 𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2)𝑉𝑎�̂�(𝑃3) − 𝑉𝑎�̂�(𝑃1)𝐶𝑜�̂�(𝑃2, 𝑃3)
2 − 𝑉𝑎�̂�(𝑃3)𝐶𝑜�̂�(𝑃1, 𝑃2)

2 − 𝑉𝑎�̂�(𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)
2 + 2𝐶𝑜�̂�(𝑃1, 𝑃2)𝐶𝑜�̂�(𝑃1, 𝑃3)𝐶𝑜�̂�(𝑃2, 𝑃3) ]
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What can we learn from these equations? 

 The bias in our estimate of program component 𝜋1 is the statistical expectation of a non-linear 

function of all terms:  

 Observed variance in program components: 𝑉𝑎�̂�(𝑃1), 𝑉𝑎�̂�(𝑃2), 𝑉𝑎�̂�(𝑃3) 

 Observed covariance between components: 𝐶𝑜�̂�(𝑃1, 𝑃2), 𝐶𝑜�̂�(𝑃1, 𝑃3), 𝐶𝑜�̂�(𝑃2, 𝑃3) 

 Realized covariance between program components and the unobserved factor: 

𝐶𝑜�̂�(𝜇, 𝑃1), 𝐶𝑜�̂�(𝜇, 𝑃2), 𝐶𝑜�̂�(𝜇, 𝑃3) 

 Although it is tempting to simply substitute the true variances and covariances into the expression 

above, that does not align with the properties of the expectation operator. We cannot distribute the 

expectation across the terms of the product, and the expectation of an inverse is not the inverse of the 

expectation. 

 However, it is reasonable to hypothesize that all the true variances and covariances affect the 

expected bias in each of the program components. 

 The bias does not depend on the actual relationship between the program components and the impact 

of the intervention. 

 The bias does not depend on the variance of the unobserved factor or of the error term (though these 

will enter the variance of the estimator). 

Bias in Model 2 

The derivation of the bias in Model 2 is analogous to the derivation for Model 1. Let 𝜋2 be the vector of 

true parameter values that can be estimated using Model 2. 

𝐸{�̂�2} − 𝜋2 = 𝐸

{
  
 

  
 

[
 
 
 
 
 
 𝐽 ∑ 𝑃1𝑗

𝑗
∑ 𝑃2𝑗

𝑗

∑ 𝑃1𝑗
𝑗

∑ 𝑃1𝑗
2

𝑗
∑ 𝑃1𝑗𝑃2𝑗

𝑗

∑ 𝑃2𝑗
𝑗

∑ 𝑃1𝑗𝑃2𝑗
𝑗

∑ 𝑃2𝑗
2

𝑗 ]
 
 
 
 
 
 
−1

[
 
 
 
 
 
 ∑ (𝜋3𝑃3𝑗 + 𝜇𝑗)

𝑗

∑ (𝜋3𝑃3𝑗 + 𝜇𝑗)𝑃1𝑗
𝑗

∑ (𝜋2𝑃2𝑗 + 𝜇𝑗)𝑃2𝑗
𝑗 ]

 
 
 
 
 
 

}
  
 

  
 

 

 

= 𝐸 {[

1 0 0
0  𝑉𝑎�̂�(𝑃1) 𝐶𝑜�̂�(𝑃1, 𝑃2)

0 𝐶𝑜�̂�(𝑃1, 𝑃2) 𝑉𝑎�̂�(𝑃2)
]

−1

[

0
𝜋3𝐶𝑜�̂�(𝑃1, 𝑃3) + 𝐶𝑜�̂�(𝜇, 𝑃1)

𝜋3𝐶𝑜�̂�(𝑃1, 𝑃2) + 𝐶𝑜�̂�(𝜇, 𝑃2)
]} 

=  𝐸

{
 
 

 
 

[
 
 
 
 
 
1 0 0

0  
𝑉𝑎�̂�(𝑃2)

𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2) − 𝐶𝑜�̂�(𝑃1, 𝑃2)
2

−𝐶𝑜�̂�(𝑃1, 𝑃2)

𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2) − 𝐶𝑜�̂�(𝑃1, 𝑃2)
2

0
−𝐶𝑜�̂�(𝑃1, 𝑃2)

𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2) − 𝐶𝑜�̂�(𝑃1, 𝑃2)
2

𝑉𝑎�̂�(𝑃1)

𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2) − 𝐶𝑜�̂�(𝑃1, 𝑃2)
2]
 
 
 
 
 

∙ 
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∙ [

0
𝜋3𝐶𝑜�̂�(𝑃1, 𝑃3) + 𝐶𝑜�̂�(𝜇, 𝑃1)

𝜋3𝐶𝑜�̂�(𝑃2, 𝑃3) + 𝐶𝑜�̂�(𝜇, 𝑃2)
]} 

 

= 𝐸

{
 
 

 
 

[
 
 
 
 
 

0
𝑉𝑎�̂�(𝑃2)(𝜋3𝐶𝑜�̂�(𝑃1, 𝑃3) + 𝐶𝑜�̂�(𝜇, 𝑃1)) − 𝐶𝑜�̂�(𝑃1, 𝑃2)(𝜋3𝐶𝑜�̂�(𝑃2, 𝑃3) + 𝐶𝑜�̂�(𝜇, 𝑃2))

𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2) − 𝐶𝑜�̂�(𝑃1, 𝑃2)
2

𝑉𝑎�̂�(𝑃1)(𝜋3𝐶𝑜�̂�(𝑃2, 𝑃3) + 𝐶𝑜�̂�(𝜇, 𝑃2)) − 𝐶𝑜�̂�(𝑃1, 𝑃2)(𝜋3𝐶𝑜�̂�(𝑃1, 𝑃3) + 𝐶𝑜�̂�(𝜇, 𝑃1))

𝑉𝑎�̂�(𝑃1)𝑉𝑎�̂�(𝑃2) − 𝐶𝑜�̂�(𝑃1, 𝑃2)
2 ]

 
 
 
 
 

}
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Appendix D. Full Specifications for All Scenarios 

This Appendix details the elements of the simulation scenarios in terms of their focus of exploration, and the input 

values of each of the variables, as shown in Exhibit D.1. 

Exhibit D.1. Details of Scenarios Examined to Analyze the CAMIC Method’s Potential 

Scenario Focus of Exploration 𝛒𝟏𝟐 𝛒𝟏𝟑 𝛒𝟐𝟑 

1 Sign 0.25 0.25 0.25 

2 Sign 0.25 -0.25 0.25 

3 Sign 0.25 0.25 -0.25 

4 Sign 0.25 -0.25 -0.25 

5 Sign -0.25 0.25 0.25 

6 Sign -0.25 -0.25 0.25 

7 Sign -0.25 0.25 -0.25 

8 Sign -0.25 -0.25 -0.25 

9 Magnitude 0.10 0.10 0.10 

10 Magnitude 0.15 0.15 0.15 

11 Magnitude 0.20 0.20 0.20 

12 Magnitude 0.25 0.25 0.25 

13 Magnitude 0.30 0.30 0.30 

14 Magnitude 0.35 0.35 0.35 

15 Magnitude 0.40 0.40 0.40 

16 Magnitude 0.45 0.45 0.45 

17 Magnitude 0.50 0.50 0.50 

18 Magnitude 0.55 0.55 0.55 

19 Magnitude 0.60 0.60 0.60 

20 Magnitude 0.65 0.65 0.65 

21 Magnitude 0.70 0.70 0.70 

22 Relative Magnitude 0.25 0.25 0.25 

23 Relative Magnitude 0.50 0.25 0.25 

24 Relative Magnitude 0.25 0.50 0.25 

25 Relative Magnitude 0.25 0.25 0.50 

26 Relative Magnitude 0.50 0.50 0.25 

27 Relative Magnitude 0.50 0.25 0.50 

28 Relative Magnitude 0.25 0.50 0.50 

29 Relative Magnitude 0.50 0.50 0.50 

30 Relative Magnitude 0.70 0.50 0.25 

31 Relative Magnitude 0.50 0.70 0.25 

32 Relative Magnitude 0.70 0.25 0.50 

33 Relative Magnitude 0.50 0.25 0.70 

34 Relative Magnitude 0.25 0.70 0.50 

35 Relative Magnitude 0.25 0.50 0.70 
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