

Drone & Mobile technologies for complementary malaria vector control

An operational research study by the PMI VectorLink Project in collaboration with the National Malaria Control Program of Madagascar

Roman de Stefanis, Kerri-Ann Guyah - Abt Associates

Background

- PMI VectorLink in collaboration
 with the National Malaria Control
 Program conducted an operational
 research study to evaluate larval
 source management (LSM) as a
 complementary vector control
 approach to reduce mosquito
 density in rice fields of
 Madagascar and therefore lessen
 the burden of malaria in rural
 communities.
- This activity sought to reach populations often excluded from traditional vector management approaches.
- In partnership with Aerial Metrics, the project assessed the feasibility and effectiveness of drone technology as a method for delivering larvicide to rice fields in targeted areas.
- Geospatial mapping and mobile data collection approaches informed real-time decision making in a cost sensitive way.

Methods

- Aerial Metric used 2 drones
 equipped with high resolution
 cameras to map 20,000 hectares
 of rice fields to inform intervention
 targeting decisions. The project
 included approximately 900
 hectares in the operational
 research study.
- Geospatial and altitude coordinates guided logistical plans, including optimal flight paths for larvicide delivery and guided carrier drones to fly automatically with minimal involvement from the pilots.
- 6 carrier drones were used to apply bi-weekly treatment of *Bti*, a bacterial larvicide that **kills** mosquito larvae before they reach maturity.
- PMI VectorLink trained 12 drone pilots on mobile data collection.
 Pilots used ODK Collect, an open-source mobile app, to capture data offline and report on a dashboard.

Findings

- **Drones dispersed** a total of 2,316kgs of *Bti* biweekly over the span of **5 months** (February 22 July 22, 2022).
- Early entomological data results show net reduction in the larval density in the rice fields compared to baseline.
- Mobile data collection was essential for adapting daily drone flight patterns due to weather, manage inventory, supervise performance and deploy resources efficiently.

Refilling of carrier drone tank with larvicide mixture.

GIS map with predetermined flight paths, built-in sensors (including cameras) to monitor altitude, speed and flow rate data.

DJI Agras T30 drone equipped with 8 nozzles delivering Bti to rice fields:

- Spray tank capacity: 30 liters
- Altitude: 3 meters
- Annuage. 3 meters
 Application rate: 300g/ha
- Air speed: 15 kph
- Flow rate: 1.5 liters/min

For additional information please contact:

Roman de Stefanis roman_destefanis@abtassoc.com

Kerri-Ann Guvah

Kerri-Ann Guyah kerriann_guyah@abtassoc.com Abt Associates

